Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae.

Identifieur interne : 000468 ( Main/Exploration ); précédent : 000467; suivant : 000469

Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae.

Auteurs : Clélia Bourgoint [Suisse] ; Delphine Rispal [Suisse] ; Marina Berti [Suisse] ; Ireos Filipuzzi [Suisse] ; Stephen B. Helliwell [Suisse] ; Manoël Prouteau [Suisse] ; Robbie Loewith [Suisse]

Source :

RBID : pubmed:29895620

Descripteurs français

English descriptors

Abstract

Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast Saccharomyces cerevisiae, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence RXS(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1 in vitro We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.

DOI: 10.1074/jbc.RA117.001615
PubMed: 29895620
PubMed Central: PMC6078453


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in
<i>Saccharomyces cerevisiae</i>
.</title>
<author>
<name sortKey="Bourgoint, Clelia" sort="Bourgoint, Clelia" uniqKey="Bourgoint C" first="Clélia" last="Bourgoint">Clélia Bourgoint</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and.</nlm:affiliation>
<orgName type="university">Université de Genève</orgName>
<country>Suisse</country>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rispal, Delphine" sort="Rispal, Delphine" uniqKey="Rispal D" first="Delphine" last="Rispal">Delphine Rispal</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and.</nlm:affiliation>
<orgName type="university">Université de Genève</orgName>
<country>Suisse</country>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Berti, Marina" sort="Berti, Marina" uniqKey="Berti M" first="Marina" last="Berti">Marina Berti</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and.</nlm:affiliation>
<orgName type="university">Université de Genève</orgName>
<country>Suisse</country>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Filipuzzi, Ireos" sort="Filipuzzi, Ireos" uniqKey="Filipuzzi I" first="Ireos" last="Filipuzzi">Ireos Filipuzzi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Helliwell, Stephen B" sort="Helliwell, Stephen B" uniqKey="Helliwell S" first="Stephen B" last="Helliwell">Stephen B. Helliwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prouteau, Manoel" sort="Prouteau, Manoel" uniqKey="Prouteau M" first="Manoël" last="Prouteau">Manoël Prouteau</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and manoel.prouteau@unige.ch.</nlm:affiliation>
<country wicri:rule="url">Suisse</country>
<wicri:regionArea>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and robbie.loewith@unige.ch.</nlm:affiliation>
<country wicri:rule="url">Suisse</country>
<wicri:regionArea>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29895620</idno>
<idno type="pmid">29895620</idno>
<idno type="doi">10.1074/jbc.RA117.001615</idno>
<idno type="pmc">PMC6078453</idno>
<idno type="wicri:Area/Main/Corpus">000532</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000532</idno>
<idno type="wicri:Area/Main/Curation">000532</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000532</idno>
<idno type="wicri:Area/Main/Exploration">000532</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in
<i>Saccharomyces cerevisiae</i>
.</title>
<author>
<name sortKey="Bourgoint, Clelia" sort="Bourgoint, Clelia" uniqKey="Bourgoint C" first="Clélia" last="Bourgoint">Clélia Bourgoint</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and.</nlm:affiliation>
<orgName type="university">Université de Genève</orgName>
<country>Suisse</country>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rispal, Delphine" sort="Rispal, Delphine" uniqKey="Rispal D" first="Delphine" last="Rispal">Delphine Rispal</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and.</nlm:affiliation>
<orgName type="university">Université de Genève</orgName>
<country>Suisse</country>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Berti, Marina" sort="Berti, Marina" uniqKey="Berti M" first="Marina" last="Berti">Marina Berti</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and.</nlm:affiliation>
<orgName type="university">Université de Genève</orgName>
<country>Suisse</country>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Filipuzzi, Ireos" sort="Filipuzzi, Ireos" uniqKey="Filipuzzi I" first="Ireos" last="Filipuzzi">Ireos Filipuzzi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Helliwell, Stephen B" sort="Helliwell, Stephen B" uniqKey="Helliwell S" first="Stephen B" last="Helliwell">Stephen B. Helliwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prouteau, Manoel" sort="Prouteau, Manoel" uniqKey="Prouteau M" first="Manoël" last="Prouteau">Manoël Prouteau</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and manoel.prouteau@unige.ch.</nlm:affiliation>
<country wicri:rule="url">Suisse</country>
<wicri:regionArea>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and robbie.loewith@unige.ch.</nlm:affiliation>
<country wicri:rule="url">Suisse</country>
<wicri:regionArea>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actin Cytoskeleton (drug effects)</term>
<term>Actin Cytoskeleton (metabolism)</term>
<term>Actin Cytoskeleton (ultrastructure)</term>
<term>Cell Membrane (drug effects)</term>
<term>Cell Membrane (metabolism)</term>
<term>Cell Membrane (ultrastructure)</term>
<term>Endocytosis (drug effects)</term>
<term>Endocytosis (genetics)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glycerol (metabolism)</term>
<term>Glycogen Synthase Kinase 3 (genetics)</term>
<term>Glycogen Synthase Kinase 3 (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (antagonists & inhibitors)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (metabolism)</term>
<term>Microfilament Proteins (genetics)</term>
<term>Microfilament Proteins (metabolism)</term>
<term>Phosphorylation (drug effects)</term>
<term>Protein Kinase Inhibitors (pharmacology)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae (ultrastructure)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Serine (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sphingolipids (biosynthesis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine (antagonistes et inhibiteurs)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Cytosquelette d'actine (effets des médicaments et des substances chimiques)</term>
<term>Cytosquelette d'actine (métabolisme)</term>
<term>Cytosquelette d'actine (ultrastructure)</term>
<term>Endocytose (effets des médicaments et des substances chimiques)</term>
<term>Endocytose (génétique)</term>
<term>Glycogen Synthase Kinase 3 (génétique)</term>
<term>Glycogen Synthase Kinase 3 (métabolisme)</term>
<term>Glycérol (métabolisme)</term>
<term>Inhibiteurs de protéines kinases (pharmacologie)</term>
<term>Membrane cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Membrane cellulaire (ultrastructure)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines des microfilaments (génétique)</term>
<term>Protéines des microfilaments (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (ultrastructure)</term>
<term>Sphingolipides (biosynthèse)</term>
<term>Sérine (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Sphingolipids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycogen Synthase Kinase 3</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Microfilament Proteins</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycerol</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Microfilament Proteins</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Serine</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Sphingolipides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Actin Cytoskeleton</term>
<term>Cell Membrane</term>
<term>Endocytosis</term>
<term>Phosphorylation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cytosquelette d'actine</term>
<term>Endocytose</term>
<term>Membrane cellulaire</term>
<term>Phosphorylation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Endocytosis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Endocytose</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines des microfilaments</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Actin Cytoskeleton</term>
<term>Cell Membrane</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Cytosquelette d'actine</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Glycérol</term>
<term>Membrane cellulaire</term>
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines des microfilaments</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Inhibiteurs de protéines kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Protein Kinase Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Actin Cytoskeleton</term>
<term>Cell Membrane</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Cytosquelette d'actine</term>
<term>Membrane cellulaire</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast
<i>Saccharomyces cerevisiae</i>
, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence R
<i>X</i>
S(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1
<i>in vitro</i>
We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29895620</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>293</Volume>
<Issue>31</Issue>
<PubDate>
<Year>2018</Year>
<Month>08</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in
<i>Saccharomyces cerevisiae</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>12043-12053</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA117.001615</ELocationID>
<Abstract>
<AbstractText>Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast
<i>Saccharomyces cerevisiae</i>
, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence R
<i>X</i>
S(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1
<i>in vitro</i>
We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.</AbstractText>
<CopyrightInformation>© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bourgoint</LastName>
<ForeName>Clélia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rispal</LastName>
<ForeName>Delphine</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Berti</LastName>
<ForeName>Marina</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Filipuzzi</LastName>
<ForeName>Ireos</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Helliwell</LastName>
<ForeName>Stephen B</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">0000-0001-6019-9574</Identifier>
<AffiliationInfo>
<Affiliation>Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prouteau</LastName>
<ForeName>Manoël</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and manoel.prouteau@unige.ch.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Loewith</LastName>
<ForeName>Robbie</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-2482-603X</Identifier>
<AffiliationInfo>
<Affiliation>From the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and robbie.loewith@unige.ch.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008840">Microfilament Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C111870">PAN1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047428">Protein Kinase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>452VLY9402</RegistryNumber>
<NameOfSubstance UI="D012694">Serine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C533049">Fpk1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C533050">Fpk2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.26</RegistryNumber>
<NameOfSubstance UI="D038362">Glycogen Synthase Kinase 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.12.1</RegistryNumber>
<NameOfSubstance UI="C068124">MCK1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PDC6A3C0OX</RegistryNumber>
<NameOfSubstance UI="D005990">Glycerol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D008841" MajorTopicYN="N">Actin Cytoskeleton</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004705" MajorTopicYN="N">Endocytosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005990" MajorTopicYN="N">Glycerol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038362" MajorTopicYN="N">Glycogen Synthase Kinase 3</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008840" MajorTopicYN="N">Microfilament Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047428" MajorTopicYN="N">Protein Kinase Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012694" MajorTopicYN="N">Serine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ark1/Prk1 family</Keyword>
<Keyword MajorTopicYN="Y">Fpk1</Keyword>
<Keyword MajorTopicYN="Y">Pan1</Keyword>
<Keyword MajorTopicYN="Y">actin</Keyword>
<Keyword MajorTopicYN="Y">aminophospholipid flippase</Keyword>
<Keyword MajorTopicYN="Y">endocytosis</Keyword>
<Keyword MajorTopicYN="Y">in vitro kinase assay</Keyword>
<Keyword MajorTopicYN="Y">membrane function</Keyword>
<Keyword MajorTopicYN="Y">signal transduction</Keyword>
<Keyword MajorTopicYN="Y">target of rapamycin (TOR)</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no conflicts of interest with the contents of this article.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29895620</ArticleId>
<ArticleId IdType="pii">RA117.001615</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA117.001615</ArticleId>
<ArticleId IdType="pmc">PMC6078453</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2004 Jul;15(7):3418-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15090616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Jun 12;290(24):14963-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25882841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Mar 17;37(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28069741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Jun;69(2):262-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Apr;19(4):1783-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2012 Dec 11;23(6):1129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23237950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Nov;14(11):4676-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jun 18;58(6):977-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26028537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2004 Dec;14(12):670-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Oct 15;125(Pt 20):4728-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22825870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Sep 26;51(6):829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jun 16;409(3):325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9224683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37855-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12133835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Jan 21;156(2):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 May 26;344(1):323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Dec;12(12):3759-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jan;148(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9475724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Aug;1821(8):1068-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22234261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Dec 1;25(24):3962-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Sep 10;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26357016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2016 Jul 08;7:275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27458383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 Mar;4(3):246-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Feb;199(2):315-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25657349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Oct 21;123(2):305-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2016 Dec 19;215(6):779-788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 May;6(5):343-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Mar 22;144(6):1203-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10087264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014;10(11):2085-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25426890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Sep 23;11:510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20863387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2017 Mar 15;130(6):1169-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28167678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Jan 11;144(1):71-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9885245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2012 Apr 15;14(5):542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22504275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Nov;12(11):3668-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11694597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2012 Feb 19;14(3):304-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Genève</li>
</region>
<settlement>
<li>Genève</li>
</settlement>
<orgName>
<li>Université de Genève</li>
</orgName>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Genève">
<name sortKey="Bourgoint, Clelia" sort="Bourgoint, Clelia" uniqKey="Bourgoint C" first="Clélia" last="Bourgoint">Clélia Bourgoint</name>
</region>
<name sortKey="Berti, Marina" sort="Berti, Marina" uniqKey="Berti M" first="Marina" last="Berti">Marina Berti</name>
<name sortKey="Filipuzzi, Ireos" sort="Filipuzzi, Ireos" uniqKey="Filipuzzi I" first="Ireos" last="Filipuzzi">Ireos Filipuzzi</name>
<name sortKey="Helliwell, Stephen B" sort="Helliwell, Stephen B" uniqKey="Helliwell S" first="Stephen B" last="Helliwell">Stephen B. Helliwell</name>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
<name sortKey="Prouteau, Manoel" sort="Prouteau, Manoel" uniqKey="Prouteau M" first="Manoël" last="Prouteau">Manoël Prouteau</name>
<name sortKey="Rispal, Delphine" sort="Rispal, Delphine" uniqKey="Rispal D" first="Delphine" last="Rispal">Delphine Rispal</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000468 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000468 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29895620
   |texte=   Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29895620" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020